16 research outputs found

    Ground vibration due to a high-speed moving harmonic rectangular load on a poroviscoelastic half-space

    Get PDF
    AbstractThe transmission of vibrations in the ground, due to a high-speed moving vertical harmonic rectangular load, is investigated theoretically. The problem is three-dimensional and the interior of the ground is modelled as a totally or partially saturated porous viscoelastic half-space, using the complete Biot theory. The solutions in the transformed domain are obtained using a double Fourier transform on the surface spatial variables. A modified hysteretic damping model defined in the wavenumber domain is used, first presented by Lefeuve-Mesgouez et al. [Lefeuve-Mesgouez, G., Le Houédec, D., Peplow, A.T., 2000. Vibration in the vicinity of a high-speed moving harmonic strip load. Journal of Sound and Vibration 231(5) 1289–1309]. Numerical results for the displacements of the solid and fluid phases, over the surface of the ground and in depth, are presented for loads moving with speeds up to and beyond the Rayleigh wave speed of the medium

    Railway-induced ground vibrations – a review of vehicle effects

    Get PDF
    This paper is a review of the effect of vehicle characteristics on ground- and track borne-vibrations from railways. It combines traditional theory with modern thinking and uses a range of numerical analysis and experimental results to provide a broad analysis of the subject area. First, the effect of different train types on vibration propagation is investigated. Then, despite not being the focus of this work, numerical approaches to vibration propagation modelling within the track and soil are briefly touched upon. Next an in-depth discussion is presented related to the evolution of numerical models, with analysis of the suitability of various modelling approaches for analysing vehicle effects. The differences between quasi-static and dynamic characteristics are also discussed with insights into defects such as wheel/rail irregularities. Additionally, as an appendix, a modest database of train types are presented along with detailed information related to their physical attributes. It is hoped that this information may provide assistance to future researchers attempting to simulate railway vehicle vibrations. It is concluded that train type and the contact conditions at the wheel/rail interface can be influential in the generation of vibration. Therefore, where possible, when using numerical approach, the vehicle should be modelled in detail. Additionally, it was found that there are a wide variety of modelling approaches capable of simulating train types effects. If non-linear behaviour needs to be included in the model, then time domain simulations are preferable, however if the system can be assumed linear then frequency domain simulations are suitable due to their reduced computational demand

    Dynamic Response of a Saturated Half-Space with Impeded Boundary to a Moving Load

    No full text
    corecore